"));
售前热线: 400-623-2690

关注海洋光学:

注册/登录

tio2 | 量子荧光|微型光纤光谱仪-ag贵宾会

偏压对低气压等离子体增强化学气相沉积tio2 薄膜的结构和性能的影响*

偏压对低气压等离子体增强化学气相沉积tio2 薄膜的结构和性能的影响*

使用等离子体增强化学气相沉积(pe-cvd)的方法, 以ttip (ti(oc3h7)4)为单体, 用氧气为载气, 以脉冲偏压为辅助在室温的玻璃基片上沉积无定型tio2 薄膜, 分析探讨在射频等离子体增强化学气相沉积tio2 薄膜的过程中, 基片上施加脉冲偏压和远离脉冲偏压的情况下成膜的比较.在沉积的过程中, 利用usb-2000 型光纤光谱仪对等离子体的发射光谱进行测量, 定性分析等离子体沉积过程中的成分组成.用uv-1901 探讨薄膜的光学特性, 发现紫外和近紫外区域有一定吸收;用扫描电镜分析薄膜表面形貌的变化, 可以看到偏压下的薄膜致密无孔, 而远离偏压下的薄膜形貌粗糙;用红外光谱分析薄膜的结构组成,可以看到明显的ti—o 吸收峰.脉冲偏压下得到的薄膜在化学、光学以及电学方面有很好应用前景.

前途的绿色环保型催化剂已成为研究的热点, 但是tio2 薄膜的这些功能都以获得锐钛矿晶型为前提.无定型tio2 薄膜由于其耐化学腐蚀性?光散射特性?电绝缘特性等, 在化学?生物?光学?电学等方面都显示出很好的应用前景[1,2].关于在低温等离子体条件下沉积无定型tio2 薄膜的研究已经有较多的报道[3-6] , 但是关于脉冲偏压对低温等离子体沉积tio2 薄膜的研究较少[7,8],特别是对于射频等离子体的偏压的研究更少, 大多数的研究者往往以射频输入电极上产生的自偏压来代替绝缘基片薄膜沉积一侧的偏压, 而实际上两者是存在差别的[9,10] .本文在射频等离子体增强化学气相沉积tio2 薄膜的情况下, 对同一沉积过程中远离射频输入电极的基片上加脉冲偏压和不加脉冲偏压的情况下的成膜进行了比较, 发现tio2 薄膜的表面形貌?光学特性等都存在着明显的不同.

fabrication of dual sensitive titania (tio2)/graphene oxide (go)one-dimensional photonic crystals (1dpcs)

fabrication of dual sensitive titania (tio2)/graphene oxide (go)one-dimensional photonic crystals (1dpcs)

1dpcs, such as bragg stack and distributed bragg mirrors, are the simplest photonic crystal. tio2/go1dpcs were fabricated by spin-coating technique. the photonic stopbands of the 1dpcs were measuredby fiber optic spectrometer. the results demonstrated that the 1dpcs with different stopbands could beobtained from controlling spin-coating and incident angles. the prepared 1dpcs have double responseto both dimethyl sulfoxide (dmso) and alkali solution.

photonic crystals, which can modulate light with a certain wave-length, are a class of functional materials with spatially ordered lattices. first introduced conceptually in 1987 [1,2]. according to the variation of refractive index and period in space, photonic crystals can be classified as one-dimensional, two-dimensional and three-dimensional photonic crystals. photonic crystals have a stopband, where light for a range of frequencies falling within thestop band cannot propagate through the photonic crystal structure[3]. photonic crystals can be designed for chemical and biological sensing when stimuli–responsive materials, responded to external stimuli, such as light, ph, organic solvent, temperature and so on ,are embedded in them [4,5]. recently, more and more responsive photonic crystals are applied in environmental monitoring [6,7],medical examination [8,9], biotechnology fields [10,11] and so on, due to their potential applications in sensors.

")); 光纤光谱仪
网站地图