by their very nature, optical fibers and, by extension, intrinsic and extrinsic optical fiberbased sensors are promising devices to be used in very different and complex environments considering their characteristics such as: capabilities to work under strong electromagnetic fields; possibility to carry multiplexed signals (time, wavelength multiplexing); small size and low mass; ability to handle multi-parameter measurements in distributed configuration; possibility to monitor sites far away from the controller; their availability to be incorporated into the monitored structure; wide bandwidth for communication applications. in the case of the optical fibers, the possibility to be incorporated into various types of sensors and actuators, free of additional hazards (i.e. fire, explosion), made them promising candidates to operate in special or adverse conditions as those required by space or terrestrial applications (spacecraft on board instrumentation, nuclear facilities, future fusion installations, medical treatment and diagnostics premises, medical equipment sterilization). major advantages to be considered in using optical fibers/optical fiber sensors for radiation detection and monitoring refer to: real-time interrogation capabilities, possibility to design spatially resolved solutions (the capability to build array detectors), in-vivo investigations (i.e. inside the body measurements).